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2Centre for Turbulence Research, Stanford University, Stanford, CA 94305, USA

3Ehime University, Matsuyama 790-8577, Japan

(Received 14 September 2000 and in revised form 21 February 2001)

The behaviour of turbulent shear flow over a mass-neutral permeable wall is studied
numerically. The transpiration is assumed to be proportional to the local pressure
fluctuations. It is first shown that the friction coefficient increases by up to 40% over
passively porous walls, even for relatively small porosities. This is associated with
the presence of large spanwise rollers, originating from a linear instability which is
related both to the Kelvin–Helmholtz instability of shear layers, and to the neutral
inviscid shear waves of the mean turbulent profile. It is shown that the rollers can
be forced by patterned active transpiration through the wall, also leading to a large
increase in friction when the phase velocity of the forcing resonates with the linear
eigenfunctions mentioned above. Phase-lock averaging of the forced solutions is used
to further clarify the flow mechanism. This study is motivated by the control of
separation in boundary layers.

1. Introduction
Control of wall-bounded turbulent flows is both a technologically rewarding field,

and a scientifically interesting problem. Both points of view are complementary.
Physical understanding can be expected to lead to better control strategies, and the
development and testing of successful control algorithms gives us clues about the
physical mechanisms which are active in the flow. In this paper we will concern
ourselves with the control of the skin friction in a turbulent channel by means of
variable wall transpiration. We will first study the effect of a uniformly permeable
wall in which the transpiration velocity is proportional to the local wall pressure
fluctuations. This will lead us to the consideration of the linear stability of the flow
as a whole, and to the study of channels in which patterned transpiration is applied
directly, independently of the pressure. The results of these forced experiments will
allow us to study the modifications of the flow in more detail, and will give us hints
on the dynamics of wall-bounded flows in general.

Boundary layer control is an old subject which has traditionally been associated
with wall manipulation, such as suction and blowing or patterned and compliant
walls, but it has been revived in recent years due to the perceived possibility of using
micromechanical devices (MEMS, see Löfdahl & Gad-el-Hak 1999) to implement
closed loop control mechanisms in which flow variables are locally measured and
acted upon (see e.g. Gad el Hak & Blackwelder 1989; Choi, Moin & Kim 1994;
Jiménez 1994). Our emphasis in this paper is more classical. Although we will consider
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open-loop variable transpiration that can probably only be implemented by MEMS
actuators, we will not assume knowledge of the local flow state. The advantages of
such an approach in terms of implementation simplicity are obvious and have, for
example, been discussed by Schoppa & Hussain (1997).

It might come as a surprise that our stated goal is to increase, rather than to
decrease, wall drag. There are of course many cases in which a higher turbulence
level is a desirable feature, such as in enhancing mixing and heat transfer, but even
in the field of aeronautics, where the desired result is usually to decrease global drag,
local drag increase may be beneficial. An obvious example, which was the original
motivation for our study, is the use of leading-edge vortex generators and roughness
strips to energize the boundary layer and to prevent downstream separation. Drag is
increased locally, but decreased globally.

In a different application Carpenter (1996) proposed the use of permeable walls
to delay transition. Porosity dissipates energy by moving fluid through viscous pores
in the wall, and his idea was that this extra dissipation could be used to damp the
growth of the Tollmien–Schlichting waves. Although this would probably increase the
global drag of a flat plate, it could be useful in delaying transition across a locally
adverse pressure gradient.

Porous walls were shown experimentally to increase skin friction in turbulent
boundary layers by Kong & Schetz (1982) and Wilkinson (1983). They also showed
that the increase of the turbulent fluctuations was only moderate, and that there were
no large changes in the structural properties of turbulence near the wall. Although it
was clear that the energy dissipated by the fluid crossing the wall was at the root of
the increase in friction, the detailed mechanism remained unclear.

An application of porous surfaces to flow control which is unrelated to the subject
of our paper, but which should perhaps be mentioned, is their use to alleviate adverse
pressure gradients and flow unsteadiness by allowing large-scale flows inside a wing
through an inner plenum chamber. For examples and related references, see the papers
by Addington, Schreck & Luttges (1992) and Gillan (1995).

In this paper we will concern ourselves with the effect of porosity, whether active or
passive, on the fully turbulent flow in a channel in which the effect of the streamwise
pressure gradient has been removed from the transpiration velocity. The details of
the numerical technique and of the simulations are discussed first. The effect of
passive porous walls on the flow are discussed in § 4, followed by the analysis of the
linear stability of the flow in § 5, and of the transient behaviour during switch-on
and switch-off of the porosity in § 6. We then present the results of the numerical
experiments with patterned forced transpiration, and finally offer a discussion of the
results, and conclusions.

2. The numerical experiments
We consider direct numerical simulations of an incompressible plane channel in a

box that is doubly periodic in the streamwise, x, and spanwise, z, directions.
Our numerical method is broadly similar to that of Kim, Moin & Moser (1987). The

equations are written in terms of the wall-normal vorticity ωy and of the Laplacian
of the wall-normal velocity ϕ = ∇2v. The fluid density is assumed to be unity for
convenience. The spatial discretization is spectral in (x, z) using Fourier series, but in
the wall-normal direction, y, we use B-splines instead of the more usual Chebychev
polynomials. The quadratic spacing of the Chebychev collocation points near the
walls results otherwise in an unacceptable restriction of the time step whenever, as in
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the neighbourhood of porous walls, the wall-normal velocity does not vanish at the
boundary.

Our B-spline method is hybrid: the nonlinear terms are evaluated by a collocation
scheme, based on fourth-order splines with an explicit finite-difference stencil for
the first derivative (Lucas 1974; Houstis, Vavalis & Rice 1988). The remaining terms,
including the pressure equation needed for the porous boundary condition, are treated
by a Galerkin method, resulting in an overall fourth-order spatial accuracy in y. The
time discretization is third-order Runge–Kutta for the nonlinear convective terms,
which are computed in physical space using dealiasing in (x, z) according to the 2/3
rule, and implicit Euler for the viscous terms. Full details of the numerical method
are given by Jiménez, Pinelli & Uhlmann (1998).

2.1. The porous boundary

The no-slip condition is imposed at both walls. The wall at y = 2h = 2 is impermeable,
but the one at y = 0 is porous, and the fluid crosses it with a wall-normal velocity
which is proportional to the pressure fluctuations. The boundary condition at y = 0
is then

u = w = 0, v = −βp′, (2.1)

where u, v, w are streamwise, wall-normal and spanwise velocity components, and
p′ = p − G(t)x is the instantaneous fluctuation of the wall pressure with respect to
the mean pressure gradient, which is continuously adjusted by the code to enforce
a constant mass flux. Except for this streamwise gradient, the wall pressure in our
simulations is assumed to be periodic in x and in z, and to have zero spatial mean.
The use of pressure fluctuations not only ensures an instantaneously zero mass flux
through the wall, but also prevents the large-scale streamwise circulation that would
otherwise arise, with fluid leaving the channel through the wall at the high-pressure
upstream end of the box, and returning to it at the low-pressure downstream end.

This boundary condition mimics the behaviour of a zero-pressure-gradient bound-
ary layer over a Darcy-type porous wall (Batchelor 1967, pp. 223–224) with a constant-
pressure plenum chamber underneath. In pipes or channels, or in boundary layers
with a downstream pressure gradient, preventing the large-scale circulation along the
plenum would require breaking it into narrow spanwise compartments by a series
of partitions. Since this might prove difficult in practice, a different control strategy,
using active suction and blowing to mimic the effect of porosity, will be discussed in
§ 7.

The porosity coefficient β in (2.1) has the dimensions of an inverse velocity. The
impermeability condition v = 0 is recovered for β = 0, while β→∞ implies zero
pressure fluctuations on the wall and an unconstrained wall-normal velocity. A
‘perfectly permeable’ wall roughly similar to this limit, although not identical, was
used in a shearless turbulent flow by Perot & Moin (1995).

Although the pressure does not enter directly in the vorticity formulation of the
equations of motion, it is needed for the boundary condition (2.1). We compute it
by solving a Poisson equation, as in Kim (1989), with boundary conditions given by
the wall-normal momentum balance. Using the no-slip property, and the continuity
equation at the porous wall, we obtain

∂tv + ∂yp = νϕ, (2.2)

where ν is the kinematic viscosity. Eliminating v by means of (2.1) and using a first-
order approximation for the temporal derivative, the numerical boundary condition
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Case βUb Rebτ Retτ Lx/h Lz/h Nx ×Ny ×Nz ∆x+ ∆y+ ∆z+ tUb/h

I1 0 181 181 8.17 3.14 256× 192× 192 9.6 0.3–3.8 5.0 125
I2 0.707→0 184 8.17 3.14 256× 192× 192 9.6 0.4–3.9 5.0 –
P1 0.585 198 188 2.69 1.59 96× 160× 96 8.7 0.5–5.0 5.1 250
P2 0.707 214 186 8.17 3.14 256× 192× 192 9.6 0.4–4.5 5.0 145
P3 0→0.707 214 186 8.17 3.14 256× 192× 192 9.6 0.4–4.5 5.0 –
F2 – 192 185 2.69 1.59 128× 160× 96 6.0 0.4–4.9 4.8 160

Table 1. Simulation parameters. The porosity coefficient of the lower wall is β, defined in (2.1). The
friction Reynolds numbers for the porous and impermeable walls are Rebτ and Retτ, respectively. Lx
and Lz denote the streamwise and spanwise lengths of the computational domain. Nx, Ny and Nz

are the number of collocation points in the three coordinate directions, and ∆x+, ∆y+, ∆z+ are the
respective grid spacings in wall units of the porous wall. tUb/h is the time over which statistics have
been accumulated. The transient experiments I2 and P3 are discussed in the text; the parameters
given for them are measured at the end of the transient. In the case F2 the forced wall-transpiration
condition discussed in § 7 is used at the lower wall.

at the porous wall, y = 0, is

∂yp
n+1 − β

∆t
pn+1 = νϕn − β

∆t
pn, (2.3)

where the superscripts refer to the time step. At the impermeable wall, y = 2h,

∂yp
n+1 = νϕn. (2.4)

These conditions are imposed implicitly to ensure numerical stability.
The velocity is derived from the evolution variables using continuity and the

definition of the vorticity. The (0,0) Fourier modes of the two wall-parallel velocity
components, which cannot be obtained in this way, are integrated directly from the
two mean momentum equations, and it is at this stage that the mean streamwise and
spanwise pressure gradients are adjusted at each time step to obtain a constant mass
flux.

2.2. Simulation parameters

The Reynolds number, based on the channel half-width and on the bulk velocity

Ub =
∫ 2h

0
u dy/2h, is Re = Ubh/ν ≈ 2830 throughout the present work. The results are

either normalized with Ub or expressed in wall units based on the friction velocity at
each wall, uτ = (ν〈∂u/∂y〉)1/2, where 〈 〉 represents averaging over wall-parallel planes
and over time. The value chosen for Re is comparable to that in the simulations of
Kim et al. (1987), and leads to Reτ = uτh/ν ≈ 180 in channels with two impermeable
walls. A summary of the numerical parameters of some representative simulations is
given in table 1.

In cases I1 and I2 both walls are impermeable. The former is a reference case
used both as an initial condition for some of the porous experiments, and as a test
of the accuracy of the code. Its statistics agree well with those of Kim et al. (1987).
Case I2 is a decay experiment in which the porous wall of case P2 is made suddenly
impermeable to test the persistence of the effects of porosity. Conversely, P3 is the
sudden start-up of porosity from the impermeable case I1 to P2, and is intended to
study the onset of the porosity effects. These two cases are discussed in § 6.

In cases P1 and P2 the lower wall is permeable. The porosity coefficients are chosen
to be large enough to have an appreciable effect on the flow, but not so large as to
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induce local flow separation, which was a problem with larger values of β. The latter
point was not investigated in detail, but it was verified a posteriori that instantaneous
localized flow reversal occurs only in a negligible fraction of the wall in the cases
discussed here.

Finally, the case F2 is given as representative of a series of forced simulations,
discussed in § 7, in which porosity was substituted by active suction and blowing.

2.3. Initial conditions

An instantaneous flow field from the fully spectral simulation of a channel with
two impermeable walls by Jiménez & Pinelli (1999) was used as the initial condition
for case I1, which was left to attain statistical equilibrium. Porosity was switched
on suddenly from this or from some equivalent equilibrium flow, and the resulting
transient was discarded before compiling statistics. The running times quoted in
table 1 are counted after statistical equilibrium has been reached for each case.

2.4. Domain size and grid resolution

The simulations have been performed in computational domains of two different
sizes. The larger box has a streamwise length of between L+

x = 1470 and 1750
wall units, depending on the flow case. Its spanwise dimension is L+

z = 565–672.
Comparison with previous studies by Kim et al. (1987) and by Kim (1989), as well
as the a posteriori evaluation of the two-point correlations of case I1, indicate that,
for impermeable channels at these moderate Reynolds numbers, such a box is large
enough not to interfere with even the largest flow scales. We will see later that this
is not true with porous walls, and that case P2 contains structures that span most of
the computational box, both in the spanwise and in the streamwise directions.

A smaller computational domain was used in case P1. Its dimension corresponds
to about three minimal flow units (MFU, Jiménez & Moin 1991) in the spanwise
direction (L+

z = 320), and slightly more than one MFU in the streamwise direction
(L+

x = 530). Data from this case should only be used for qualitative comparisons,
especially given the large sizes of the structures mentioned above. On the other hand,
a simulation similar to P2, but in the small box of P1, resulted in friction coefficients
that differed from those of the larger box by less than 4%. The smaller box was also
used for the forced wall transpiration experiments discussed in § 7.

The details of the numerical grids used in our computations are included in table 1.
A hyperbolic tangent stretching

y = 1 + tanh (γξ)/ tanh (γ), ξ ∈ (−1, 1), (2.5)

was applied in the wall-normal direction, with the grid being uniform in ξ, and the
stretching parameter chosen so that ∆ymax/∆ymin ≈ 11. The resolution, expressed in
wall units at the bottom wall, was good in all cases.

3. Turbulence statistics
The temporal variation of the instantaneous, (x, z)-plane-averaged, skin friction

coefficient cf = 2u2
τ/U

2
b , for the simulation P2 is given in figure 1. The most obvious

effect of porosity is to substantially increase the mean shear over the porous wall. It is
shown in table 2 that, compared to the fully impermeable case I1, the drag increases
by 20% in case P1 and by almost 40% in case P2. Since only one of the two walls is
made porous in our experiments, a slightly better measure of performance is the ratio
between the friction coefficients of the two walls, which is also given in the table.
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Figure 1. Evolution of the plane-averaged wall-friction coefficients in case P2.
−−−−, impermeable wall; ———, porous wall.

Case v+
rms cfb/cf0 cfb/cft A y+

w y+
ωx

I1 0 1 1 5.5 42.1 22.9

P1 0.096 1.208 1.106 4.5 28.3 16.8

P2 0.165 1.391 1.325 1.7 35.7 18.9

W5 0.130 1.444 2.8

CH −0.125 0.765 8.0

Table 2. Characteristics of porous walls. cfb/cf0 is the change of the friction coefficient on the
bottom wall with respect to that of the reference case I1. cfb/cft is the ratio between the friction
coefficients of the porous and impermeable walls. A is the additive constant of the logarithmic
velocity profile, and v+

rms is the r.m.s. transpiration velocity at the wall. The minus sign in case CH
refers to it being an opposition control. y+

w and y+
ωx

are the locations of the peaks of the spanwise
velocity and of the streamwise vorticity fluctuation profiles, and are discussed in the text. W5 is
a ‘partially permeable’ pipe from Wagner & Friedrich (1998), with uτR/ν = 180, α = 0.975 and
∆r+ = 0.2, as defined in (3.1). Case CH is an active control case in a channel, with α = −1, ∆y+ = 5,
from Choi et al. (1994).

Table 2 also includes values from two related numerical experiments. Wagner &
Friedrich (1998) performed simulations of turbulent pipes with ‘permeable’, no-slip
walls, at Reynolds numbers similar to ours. Their boundary condition for the radial
velocity at the wall, r = R, is

rur|r=R = α rur|r=R−∆r. (3.1)

It will be seen when we deal in § 5 with the stability of the flow that this condition is
linearly equivalent to porosity, at least when viscous effects are neglected. A similar
condition was used in the active control experiments of Choi et al. (1994), who
measured the wall-normal velocity on a plane at some distance from the wall, and
applied at the wall a transpiration proportional to it. Since their purpose was to
decrease, rather than to increase drag, they chose α < 0. We have included in table 2
a ‘partially permeable’ case from Wagner & Friedrich (1998), and another from Choi
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Figure 2. Mean velocity profiles. −−−−, impermeable channel I1; ———, porous case P2.
(a) Outer scaling; (b) wall scaling near the porous wall. The dotted line is 〈U〉+ = 2.5 log y+ + 5.5.

et al. (1994), with roughly the same normal intensities at the wall. They result in
comparable changes in the friction coefficients, although one is positive and the other
one negative, and both are of the same order of magnitude as the result of our
case P2. The table approximately supports a monotonic change of the increment of
the skin friction with the transpiration intensity, and suggests that the effect on the
turbulence structure of transpiration patterns generated in very different ways might
be similar, at least at moderate intensities. We will see later that this is not strictly
true in the present case.

Profiles of mean streamwise velocity 〈u〉 are shown in figure 2. Since the two walls
of the porous channel are different, its velocity profile is asymmetric, biased towards
the upper (impermeable) wall. The semi-logarithmic representation shows that the
logarithmic behaviour of the velocity above y+ = 30 is preserved with the usual slope
κ−1 = 2.5. The value of the intercept of the logarithmic law decreases for the porous
wall, as a consequence of the increase of the friction coefficient.

It is interesting to estimate how much of the energy loss implied by the increase in
wall friction is due to increased dissipation within the flow, and how much is being
directly absorbed at the wall by the porosity condition. The time-averaged equation
for the kinetic energy K can be put in the form

〈Gu〉+ ∂yφ = −〈ε〉, (3.2)

where ε = ν|∇u|2 is the viscous energy dissipation rate and φ = 〈vK + vp′ − ν∂yK〉 is
the wall-normal energy flux. Integrating (3.2) over y, computing the pressure gradient
G from the streamwise balance of forces, and using the porosity condition to eliminate
the pressure fluctuations, we obtain

(τb + τt)Ub =

∫ 2h

0

〈ε〉 dy − 〈v3/2− v2/β〉 |y=0, (3.3)

where τb and τt are respectively the wall stresses at the bottom and top walls. The
second term on the right-hand side of the equation is the energy flux through the
wall due to porosity. We can use (3.3) to estimate the increase in wall friction due to
this flux,

∆τ

τ
=

∆cf
cf

=
v+2

rms

βUb

− uτ

2Ub

〈v3〉+|y=0. (3.4)
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Figure 3. Root-mean-square fluctuation intensities for the impermeable case I1 (lines with sym-
bols) and for the porous one P2. (a) Velocities. ———, u′; −−−−, v′; — ·—, w′. Outer scaling.
(b) Velocities in wall scaling near the porous wall. (c) Vorticities. −−−−, ω′x; ———, ω′y; — ·—,
ω′z .

The r.m.s. transpiration velocity v+
rms = 〈v2〉1/2 is given in table 2. Using for example

case P2, where v+
rms ≈ 0.16 and βUb ≈ 0.7, the pressure term on the right-hand side of

(3.4) is approximately 0.04, while the cubic term is at most of order v+3
rmsc

1/2
f ≈ 10−4.

The pressure term is dominant, but it only explains about 10% of the observed
increase in wall friction, which must therefore be due to changes within the flow that
increase the bulk viscous dissipation.

3.1. Fluctuations

We define in the usual way the fluctuations with respect to the plane average as

u = 〈u〉(y) + u′. (3.5)

It will later be convenient to use spanwise-averaged fluctuations,

ū(x, y, t) = 〈u〉z − 〈u〉, (3.6)

where the subscripts of 〈 〉 denote the variables over which the averaging is done. We
reserve 〈 〉, without subscripts, for the regular plane averaging over x, z and t. The
time average of ū, usually with respect to some moving frame of reference, and the
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corresponding triple decomposition of the fluctuations will be denoted by

ũ(x−Uct, y) = 〈ū〉t, u = 〈u〉+ ũ+ u′′. (3.7)

The advection velocity Uc of the axes will always be clear from the context.
The intensities of the three velocity fluctuations are shown in figures 3(a) and 3(b).

Porosity enhances the three velocity components throughout the lower half of the
channel, at least when normalized with the bulk velocity Ub. This effect is strongest
for the two transverse components, and less marked for the streamwise one. When
the intensities are normalized with the local friction velocity, the increase in the
streamwise intensity disappears, but the transverse components are still enhanced.
The locations of the peaks of all the fluctuation profiles move closer to the wall. The
other half of the channel, especially above y = 1.5h, is relatively unaffected by the
porosity.

The intensities of the vorticity fluctuations are given in figure 3(c). The r.m.s.
value of the streamwise component ω′x is enhanced near the porous wall, and the
location of its second maximum is several wall units closer to the wall in the porous
case than in the regular channel. This behaviour is consistent with similar effects
observed in the control experiments of Choi et al. (1994), and in a series of related
experiments by Jiménez (1994) in which the spanwise velocity was actively controlled,
instead of v. In all of those cases, controls that increase the drag tend to move the
fluctuation peaks towards the wall and to strengthen the transverse fluctuations, and
vice versa. The strength of the streamwise velocity fluctuations is usually relatively
unaffected.

This behaviour was interpreted by Jiménez (1994) as meaning that the main reason
for the increase of the wall friction is that the quasi-streamwise vortices move closer
to the wall. The maximum of the intensity of ω′x is commonly associated with the
wall-normal location of the quasi-streamwise vortices (Kim et al. 1987), and so are
the transverse velocity components. The streamwise velocity fluctuations, on the other
hand, correspond to the streaks and are not directly connected with the vortices. It was
found by Jiménez (1994) that the shift of the peak of the spanwise velocity fluctuations
was a good predictor of the skin friction, and a rough model was presented which
postdicted this dependence on physical grounds. It is tempting to apply the same
criterion here. The location of the spanwise velocity and streamwise vorticity peaks
for the two porous experiments are given in table 2. Both are closer to the wall
than in the impermeable case, but the shift is smaller than in the experiments cited
above, and it is not monotonic with the change in cf . The reason for the latter is
not clear, but we have already noted the dangers of comparing flows with different
computational boxes.

Other things are also different here from the case of active control. The peak of
ω+
y is substantially reduced above the porous wall which, since the main contribution

to this vorticity component near the wall is ∂u/∂z (Jiménez & Pinelli 1999), implies
that the streaks are being weakened. Since they are known to be generated by the
streamwise vortices, which are strengthened, this suggests that a new mechanism is
present in this case.

The fluctuations of the spanwise vorticity fluctuations increase a lot near the porous
wall, reaching in P2 nearly twice their usual value. We have verified that this represents
fluctuations of the skin friction, rather than a direct contribution of the transpiration
through ∂v/∂x. That the fluctuations of the vorticity increase more than its mean also
suggests that the mechanism for drag increase is in this case more complex than a
simple strengthening of the wall-turbulence cycle.
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Figure 4. Two-point spanwise autocorrelations in the porous channel P2. (a) Streamwise velocity;
(b) wall-normal velocity: ———, impermeable wall; −−−−, porous wall. Lines are shown at y+ = 5,
17, 30, 50, in wall units local to each wall, increasing along the arrows.
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Figure 5. Two-point autocorrelations across the channel as a function of the streamwise separation.
Case P2. (a) Ru′u′ . (b) Rūū. The spacing of the contour lines is 0.1; ———, positive; −−−−, negative;
— ·—, zero.

4. Structure
Figure 4 shows autocorrelation functions of the streamwise and wall-normal velocity

fluctuations near both walls of the porous channel, as a function of the spanwise
separation. A full set of correlation functions for the three velocity components and
for the pressure can be found in Jiménez et al. (1998). In a regular channel, Ru′u′(∆z)
first becomes negative and eventually falls to zero beyond ∆z+ ≈ 100 (Kim et al.
1987), and the same behaviour is found here for the impermeable wall. Near the
porous wall, however, the correlation does not decay and, especially very close to the
wall, reaches a plateau which implies spanwise coherence across the full box. The
same is true for Rv′v′ , although only very close to wall. The Rp′p′ correlations, not
shown here, show the same effect, but not Rw′w′ .

The behaviour of the streamwise correlation is more complicated. In a regular
channel it decays slower than the spanwise one, because the velocity streaks are
elongated in the streamwise direction. Figure 5(a) is a contour plot of the streamwise
correlation Ru′u′(∆x) as a function of the wall-normal coordinate y, and should not
be confused with a two-dimensional correlation.

The top wall in this figure is essentially similar to those of regular channels at
moderate Reynolds numbers. The correlation decays slowly without changing sign,
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Figure 6. Influence of the spanwise-coherent fluctuations in the porous case P2. (a) Kinetic energy,
k = 〈u2 + v2 + w2〉/2, normalized in outer units: ———, from the total fluctuations u′; −−−−,
from the three-dimensional fluctuations, u′′. (b) Shear stress: ———, total stress, including viscous
terms and −〈u′v′〉, normalized in wall units of the impermeable channel; −−−−, the same quantity
computed from the three-dimensional fluctuations −〈u′′v′′〉. The hatched area represents in both
plots the stresses due to the two-dimensional fluctuations, ū, and the lines with symbols correspond
to the impermeable case I1.

with a characteristic length scale of 500–700 wall units. The porous wall is different.
The correlation is shorter, and becomes slightly negative at long distances, implying
the presence of a weakly coherent structure with a wavelength of the order of the
box length.

The behaviour of the spanwise correlations suggests that this structure is also
coherent spanwise, and that it should be described well by the spanwise-averaged
quantities introduced in (3.6). The streamwise correlation of ū is given in figure 5(b).
The reason for the shorter correlations of the full velocity fluctuations near the
porous wall is now clear. There is strong spanwise-coherent structure near that wall,
whose streamwise wavelength fills the computational box, and which is organized
enough for its correlation to be approximately −0.7 at the end of the domain. This
structure is reflected, although more weakly, in the upper half of the channel, but
it is overwhelmed near the upper wall by the streamwise coherence of the streaks.
Although not shown, the correlations of the pressure show a similar effect, extending
across the whole channel. Those of the wall-normal velocity are only coherent very
near the bottom wall, in agreement with figure 4(b), and those of the spanwise velocity
show little difference from the regular channel. Details can be found in Jiménez et al.
(1998).

The two-dimensional structures suggested by these correlations contribute substan-
tially to the turbulent stresses in the neighbourhood of the porous wall. Figure 6(a)
compares the total fluctuation energy for the porous and for the impermeable chan-
nels. The fluctuations are stronger near the porous wall, and it is clear from the figure
that a substantial part of the increase is due to the spanwise-coherent component,
whose contribution is represented by the hatched area. Note however that, outside
the immediate neighbourhood of the wall, most of the change in the energy cannot
be explained in this way, implying that, even if the two-dimensional component may
explain the modifications of the near-wall layer, it also acts as a trigger of more
general changes in the core flow.

The same conclusion can be drawn from figure 6(b), which displays total shear
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Figure 7. Instantaneous isosurfaces of streamwise velocity fluctuations of case P2 with u′+ = ±4.5.
Negative values have lighter colour. The streamlines in the back of the box are from the
two-dimensional field (ū, v̄). The (x, z) surface underneath indicates regions of local blowing (dark
shading) and suction (light shading).

stresses. There is a sizeable contribution near the wall from the two-dimensional
Reynolds stress −〈ūv̄〉 but, further into the flow, most of the increase in the friction
coefficient of the porous wall is due to changes in the three-dimensional fluctuations.

The visualization in figure 7 clearly shows the approximately two-dimensional
organization of the flow. The streamlines of the spanwise-averaged flow are shown
on the back plane of the figure, and take the form of large spanwise rollers. The
distribution of the transpiration in the porous wall is shown at the bottom of the
visualization, displaced from the actual position of the wall for clarity. Although
there is nothing intrinsically two-dimensional in the porosity condition (2.1), the
transpiration organizes itself into roughly spanwise bands, which are reflected in
the interior of the flow by local strengthening of the streamwise velocity streaks.
Although we will see below that there is indeed some modulation of the streaks, most
of the effect seen in the figure is an artifact of the visualization. The isosurfaces of u′
include the streamwise variation of the two-dimensional velocity ū and, wherever the
transpiration is predominantly into the wall, the mean velocity near the wall increases
and the low-velocity streaks appear to weaken. The opposite is true in regions of
local blowing.

The latter effect is important in explaining the change in the friction coefficient at
the porous wall, since suction increases locally the velocity gradient near the wall,
and therefore the local skin friction. This is seen in figure 7 from the distribution of
the high-velocity isosurfaces, which are plotted in a darker colour. They are found
predominantly near the wall, where they mark the location of high skin friction, and
tend to cluster in the bands where suction is dominant. The mean velocity gradient
decreases in the zones of mean injection, and cancels in part this effect, but it was
argued by Orlandi & Jiménez (1994) that, whenever there is a zero-mean wall-normal
velocity near the wall, the overall effect is to increase skin friction.

Note that the two rolls do not fill the computational box, suggesting that the
preferred wavelength is λx/h ≈ 5, somewhat shorter than the box. This seems to
disagree with figure 5(b), in which the minimum of the correlation is very close to
one half of the box length, but is representative of the instantaneous snapshots of the
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Figure 9. (a) Scatter plot of the instantaneous spanwise-averaged transpiration velocity at the lower
wall, v̄(x, 0), compared with the local spanwise-averaged friction coefficient 〈cf〉z . The circles are
steady transpiration calculations by Sumitani & Kasagi (1995). (b) Scatter plot of v̄(x−∆x, 0) against
the magnitude of the spanwise variation of the streamwise velocity, defined in (4.2). ∆x = 1.12. Both
plots are compiled over 17 well-spaced fields of case P2. The intensity in (b) has been averaged over
y+ = 20–30.

flow. While statistical averages are generally to be preferred to instantaneous views,
the two are not necessarily contradictory. It is easy to check, for example, that the
autocorrelation function of

u = [sin (x) + sin (x/2)]2, (4.1)

which is similar to the velocity in figure 7 in that it is formed by a train of double
pulses separated by longer gaps, has a minimum at ∆x = 2π, which is one half of the
distance between the groups of pulses, instead of at some value corresponding to the
distance between neighbouring peaks. This is because the statistics average between
the distance of each pulse to its leading and to its trailing neighbour.

The two-dimensional rollers advect downstream with a velocity U+
c ≈ 12, as can

be seen in the space–time correlation of the longitudinal spanwise-averaged velocity
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in figure 8. This advection velocity is approximately the same one measured for the
energy-containing structures in the wall layer by most investigators (Kim & Hussain
1993; Jiménez & Pinelli 1999).

The association of the local suction with the increased skin friction is made explicit
in figure 9(a), which compares the local spanwise-averaged transpiration velocity
with the spanwise-averaged skin friction. Both are well correlated, and it is clear
that suction increases friction more than blowing decreases it. It is interesting that
the observed correlation agrees well, for weak blowing and suction, with the results
of Sumitani & Kasagi (1995) for steady uniform transpiration, suggesting that the
wavelength of the rollers is long enough for the near-wall effect of transpiration to
be close to equilibrium. In figure 9(b) we plot the transpiration velocity against a
measure of the local strength of the velocity fluctuations, defined by

σz(u)
2 = 〈u2〉z − 〈u〉2z . (4.2)

This quantity depends on x, t and y, and is plotted against the transpiration velocity
at some distance, x− ∆x, upstream. The offset is chosen to maximize the correlation
of both quantities, and the optimum turns out to be ∆x/h ≈ 1.2. This value is not
any obvious fraction of the length of the box, Lx/h ≈ 8, but it is close to one half
of the distance between the two neighbouring rolls in figure 7. This agrees with the
location of the apparent enhancement of the turbulent activity in that figure, and
is consistent with the intuitive notion that the space between the two rolls acts as
an ‘ejection’ in promoting the local instability of the flow. Note that σz(u) does not
contain contributions from the modulation of the spanwise-averaged velocity, and is
therefore free from the ambiguities mentioned above in relation with figure 7. This
association of stronger turbulent fluctuations with the large-scale ejections created by
the rollers will be found again in the forcing experiments discussed in § 7 (figure 17b).

A last experiment should be briefly mentioned. To check that the rolls were indeed
responsible for the increase in skin friction, a numerical simulation was carried out
in which the porosity condition (2.1) was applied only to those Fourier components
whose streamwise wavenumber was larger than kxh = 7. This prevented the formation
of coherent structures with streamwise wavelengths longer than approximately h, but
did not inhibit transpiration, which only decreased slightly. The result was that the
rolls did not form, and that the skin friction of the porous wall was essentially
unchanged from its impermeable value.

5. Linear stability
The spontaneous formation of the large spanwise rollers suggests that they originate

from a linear instability of the mean flow, even if the velocity profile of a turbulent
channel with impermeable walls was shown by Reynolds & Tiedermann (1967) to be
stable. As in that work, we will analyse the stability of the porous case using a linear
perturbation of the mean profile, substituting the constant molecular viscosity by the
variable isotropic eddy viscosity,

νt = u2
τ

1− y/h
∂y〈u〉 , (5.1)

needed to maintain the mean velocity profile. Note that this definition includes the
molecular viscosity. Assume perturbation velocities of the form

v′ = v̂(y) exp i[α1(x− ct) + α3z], (5.2)



Turbulent shear flow over porous surfaces 103

where the wavenumbers α1 > 0 and α3 are real, and the phase velocity c is possibly
complex. The linearized equation takes the form

[〈u〉 − c](∂yy − ᾱ2) v̂ − 〈u〉yyv̂ + iα−1
1 (∂yy − ᾱ2)[νt(∂yy − ᾱ2) v̂] = −iα1νt,yyv̂, (5.3)

where ᾱ2 = α2
1 +α2

3, and the subindices of the mean velocity and eddy viscosity denote
derivatives with respect to y. The left-hand side is the standard Orr–Sommerfeld
equation, while the extra term on the right-hand side originates from the variation
of the eddy viscosity. The impermeability and no-slip boundary conditions take their
usual form

v̂(2h) = ∂yv̂(2h) = ∂yv̂(0) = 0. (5.4)

The porosity condition (2.1) holds at the lower wall, with the pressure given by

ᾱ2p̂ = ∂y[νt(∂yy − ᾱ2)v̂] + iα1 [〈u〉yv̂ + (c− 〈u〉)∂yv̂]. (5.5)

Note that, except for the viscous terms, this boundary condition is a linear combination
of v̂ and v̂y , and is therefore essentially equivalent to the ‘offset’ controls discussed in
(3.1).

Except for the right-hand side of (5.3), Squire’s transformation (Drazin & Reid
1981, p. 129) reduces the problem to a two-dimensional one with α3 = 0, and a
modified viscosity and porosity

ν̂t = ᾱνt/α1, β̂ = α1β/ᾱ. (5.6)

Oblique waves therefore behave as if they had higher viscosities and lower porosities
than two-dimensional ones with the same ᾱ. Since we will see below that both effects
are stabilizing, we will assume from now on that α3 = 0. The right-hand side of (5.3)
does not transform correctly under (5.6), but it can be checked numerically that its
effect is small and does not modify the previous conclusion.

The possible instability modes obtained in this way generate Reynolds stresses
which modify the mean flow and the friction coefficient. Consider a plane channel. If
we assume that v′ is the real part of (5.2), we obtain

〈u′v′〉 = 2 Re (ûv̂∗) = −2α−1
1 Im (v̂∗∂yv̂), (5.7)

where the asterisk stands for complex conjugation, Re ( ) and Im ( ) are the real and
imaginary parts, and the second part of the equation derives from continuity. Note
that the approximation (5.7) is consistent even if the stress is a quadratic quantity.
This is because, if we consider expansions of the form v = v0 + εv1 + ε2v2 + . . . for
some small amplitude parameter ε, the leading contributions to the Reynolds stress
are 〈u1v1〉, 〈u0v2〉 and 〈u2v0〉. The zeroth-order terms are constant for a given y, and
can be taken out of the averaging brackets. The last two contributions then vanish
because continuity ensures that 〈vn〉 = 0 to all orders. The first one is (5.7).

We can integrate the momentum equation to obtain

νt∂y〈u〉 = τb − τb + τt

2

y

h
+ 〈u′v′〉, (5.8)

where τb and τt are the shear stresses at the top and bottom walls. Integrating this
equation again gives the velocity profile, and the condition 〈u〉(2h) = 0 results in a
relation between the two wall stresses. Integrating once more gives the bulk velocity.
Defining it, for example, to be constant gives another relation, and allows us to
compute the change in the friction coefficients. The result for an initially symmetric



104 J. Jiménez, M. Uhlmann, A. Pinelli and G. Kawahara

channel whose wall stress is τ0 is

τt − τb
2

= F3(2h)/F1(2h),

τt + τt

2
= τ0 +

G3 − G1F3(2h)/F1(2h)

G2

,

 (5.9)

where

F1(y) =

∫ y

0

ν−1
t dy, F2(y) =

∫ y

0

ν−1
t (1− y/h) dy, F3(y) =

∫ y

0

ν−1
t 〈u′v′〉dy, (5.10)

and Gn = 〈Fn〉y . There are several strong assumptions in the derivation of this formula,
starting with the eddy viscosity approximation itself, but especially the implication
that νt does not change as a result of the development of the instability. Even mild
modifications, such as assuming that νt scales with the new uτ, lead to corrections
which are of the same order as those included in (5.8). Numerical experiments,
however, as well as the quantitative comparisons in § 7, suggest that the increments of
the skin friction predicted by (5.9) can at least be used to compare different control
strategies.

5.1. Inviscid modes

The origin of the porous instability can most easily be understood from the simplified
inviscid analysis of a piecewise-linear profile over a single wall,

〈u〉 = Uy/h, y < h,

= U, y > h. (5.11)

In that case (5.3) reduces to a second-order equation, and the only boundary conditions
are the porosity relation at the wall, and v̂→0 as y→∞. The solution is continuous
everywhere and can be expressed as a combination of exponentials exp (±α1y). There
are two eigenvalues which satisfy

2β̃σ2 + [2iα̃− β̃(1 + 2α̃− e−2α̃)]σ + (iα̃− β̃)(1− 2α̃− e−2α̃) = 0, (5.12)

where α̃ = α1h, β̃ = βU and σ = cα̃/U, are the dimensionless wavenumber, porosity
and eigenvalue. The real phase velocity and the growth rate are given by cr/U =
α̃Re (σ) and αci = U Im (σ)/h.

In the impermeable case, β̃ = 0, only one root survives, which is neutral. Its phase
velocity is equal to

cr/U = (e−2α̃ + 2α̃− 1)/2α̃. (5.13)

For very long waves cr/U ≈ α̃� 1, and the eigenfunctions fill most of the boundary
layer. For short waves, α̃� 1, the phase velocity is cr ≈ U, and the eigenfunctions are
localized in the neighbourhood of the corner of the profile. This neutral shear wave
exists for all boundary layer profiles in the inviscid limit. Viscosity damps it, but it
remains capable of coupling with the porous boundary condition.

For β̃ � α̃ we can expand the roots of (5.12) as a series in the porosity coefficient.
There are two roots. One of them is proportional to β̃−1 and is strongly damped,
but the one corresponding to (5.13) becomes unstable. The growth rate is maximum,
Im (σ) ≈ 0.14β̃, at α̃ ≈ 0.387, and vanishes when α̃ = 0 or α̃→∞. The real part of the
phase velocity is unchanged to O(β̃).

In the limit of very large porosities, β̃→∞, all the wavenumbers below α̃ ≈ 1.83 are
unstable. The fastest growth rate tends to Im (σ) ≈ 0.25, at α̃ ≈ 1.23. For porosities
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between these two extremes all the wavenumbers are unstable, but the growth rates
are small for wavenumbers outside the instability range of the infinite porosity case.

There are simple interpretations for the behaviour of the two porosity limits. When
β̃ � 1 the porous boundary condition (2.1) is equivalent to p̂(0) = 0 which, using
(5.5), reduces to ∂yv̂(0) = 0. If we extend antisymmetrically the profile (5.11) to
y < 0, it becomes a piecewise-linear free shear layer. The condition at y = 0 fixes
the parity of the solution. The v̂ of the infinite-porosity eigenfunctions is even with
respect to y = 0, inducing sinuous deformations of the shear layer. These are the
well-known Kelvin–Helmholtz unstable waves, and they are the only instabilities of
this profile (Drazin & Reid 1981, p. 146). The varicose deformations generated by
the impermeable boundary condition, v̂(0) = 0, are stable. The intermediate porosities
connect the Kelvin–Helmholtz instability of the fully permeable wall to the varicose
neutral modes of the impermeable one.

A word of caution is needed here. The previous inviscid analysis can be repeated
for a channel. There are in that case two neutral modes in the impermeable limit: a
varicose one in which v̂ is symmetric with respect to the centreline, and a sinuous one
in which it is antisymmetric. For short waves both modes are equivalent, and both
are approximately equal to the one in the boundary layer. For long waves only the
varicose mode resembles that in the boundary layer.

Both modes become unstable when the walls are made porous. For short waves,
both are again similar to each other. For long ones, while the varicose mode behaves
as in the boundary layer, the sinuous one remains unstable when α̃ = 0, and becomes
dominant.

Boundary layers are outside the scope of this paper, and the present analysis can
only be taken as indicative, but it should be kept in mind that some of the very long
modes found in the direct simulations and in the stability analysis of channels, may
only be relevant for internal flows.

5.2. Viscous modes

The extension of the previous analysis to realistic velocity and eddy viscosity profiles
is done numerically. We use a code in which the system (5.3)–(5.5) is discretized by
a Galerkin-tau method, using sixth-order B-splines as the expansion functions. The
boundary conditions are eliminated by partial Gauss elimination before performing
the eigensystem analysis, and all the eigenvalues are computed, with the most unstable
one being determined a-posteriori. Spurious numerical eigenvalues are eliminated by
varying the grid resolution and discarding rapidly changing roots. The procedure
was validated against the results of Orszag (1971) and Thomas (1953) for plane
Poiseuille flow, and a resolution of 200 splines with an eleven-fold hyperbolic-tangent
grid stretching was found satisfactory. We have used it for a channel at the same
Reynolds number as our full simulations, in which only the bottom wall is made
porous. The eddy viscosity is determined using (5.1) with the mean profile of Reynolds
& Tiedermann (1967), with constants adjusted to fit as closely as possible the mean
velocity of case I1. It was checked independently that the eigenvalues are not very
sensitive to minor details of the velocity profile.

The results are shown in figure 10, as a function of the porosity coefficient and of
the wavelength λx = 2π/α1. Very low porosities are now stable, as well as very short
and very long waves, but there is a large instability region which contains the two
porous cases discussed above. The phase velocities are relatively low for short waves,
in which the critical layer is close to the wall, and increase to values comparable to
the centreline velocity for long ones, whose eigenfunctions peak farther away. The
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Figure 10. Stability characteristic of the turbulent velocity profile in a channel with one porous
wall. Reτ = 180. (a) Growth rate of the unstable waves, α1Im (c) h/uτ = 0(0.1)0.5 and 1(0.5)10.
(b) Phase velocity, Re (c)/uτ = 8(2)20, increasing from left to right. The heavier solid line is in both
cases the neutral border. 4, case P1; e, case P2.

doubling times for the porosities considered in this paper are of the order of the
large-scale turnover time, O(h/uτ). For very large porosities the eigenvalues approach
the Kelvin–Helmholtz limit, as in the inviscid case.

Because of the mean-field assumptions used in the derivation of the instability
equations, only those results which refer to wavelengths which are everywhere much
longer than the integral scale of the turbulence should be considered quantitative.
Perhaps for this reason, the wavelengths observed in the numerical simulations tend
to be longer than the most unstable one, which is λ+

x ≈ 500 for low porosities.
In principle, of course, all unstable wavelengths may be observable in systems in
statistical equilibrium, and the selection mechanism is not necessarily linear. The
quantitative agreement of other variables is also moderate. The phase velocity for
the unstable waves of case P1 is given in figure 10 as c ≈ 8, but it was measured
in figure 8 to be closer to c ≈ 12. The absolute value of the linear eigenfunctions
can be compared with the distribution of two-dimensional energy near the porous
wall. Although both agree in having their maxima very near the wall, the peak of the
eigenfunction is substantially narrower than that of the measured energy.

6. Transient behaviour
Up to now we have described fully developed flows over a porous surface. Since one

of the motivations of this work is the control of boundary layers, it is also important
to estimate the length of the transient when porosity is turned on or off. This models
the behaviour of a boundary layer flowing over a porous strip, and addresses the
question of how wide would the strip have to be to produce a reasonable effect, and
how long this effect lasts after the strip ends.

We discuss in this section two experiments, both of which are numerically identical
to case I1. In the first one, which is labelled P3 in table 1, the impermeable lower
wall of the regular channel I1 is suddenly made porous as in P2. In the second one,
labelled I2, the porosity of P2 is suddenly turned off to return to I1. In both cases
the moment at which porosity is changed is labelled in the figures as t = 0.

The evolution of the friction coefficient is given in figure 11 for both cases. In the
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Figure 11. Evolution of the plane-averaged wall-friction coefficient after switching porosity between
cases I1 and P2: ———, porous wall; −−−−, impermeable wall; — ·—, friction coefficients of
both walls in the impermeable channel I1, and in the porous one P2. (a) Start-up from I1 to P2. (b)
Decay from P2 to I1.
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Figure 12. Decay of the streamwise modulation of the local friction coefficient in the shut-down
case I2. Time grows from bottom to top, Ubt/h = 0, 0.4, 1.85, 13.3. Lines are offset for clarity, and
the dashed lines are the instantaneous plane-averaged cf .

start-up case the final equilibrium is reached at approximately Ubt/h = 60, which is
roughly u2

τt/ν = 700. The growth of the friction coefficient starts immediately after
the porosity is turned on, and increases roughly linearly until reaching its final value.
The decay of the friction in the shutdown experiment is faster, and the porous wall
returns to the friction levels of the impermeable one at Ubt/h ≈ 10.

The fast decay of the friction in this latter experiment is accompanied by the
disappearance of the streamwise modulation of the friction coefficient, suggesting a
rapid decay of the spanwise rollers. This is seen in figure 12 through the evolution
of the spanwise-averaged cf during the shutdown. For the initial porous wall the
friction coefficient shows excursions of ±50% along x, but they are quickly damped
and, at Ubt/h ≈ 2, the skin friction is already approximately uniform. At this time
the difference between the plane-averaged friction coefficients of the two walls has
decreased from being about 30% to less than 10%.
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Figure 13. (a) Variation of the form factor of the boundary layer over the porous wall during the
transition: ———, shutdown case I2; −−−−, start-up case P3; — ·—, mean form factor for case
I1; · · · · · ·, mean form factor for case P2. (b) Time variation of the instantaneous mean velocity
profile for case I2, normalized in the wall units of the porous wall at the beginning of the shut-down.
Times are Ubt/h = 0, 3.5, 6.4, 10, 13.3, increasing in the direction of the arrow. −−−−, Asymptotic
profile of case I1, in the same normalization.

The picture that the rolls, and therefore the effect of porosity, decrease quickly
after switching the boundary condition is challenged by figure 13(a), which shows
the evolution of the form factor of the boundary layer in the bottom part of the
channel. This is defined as δ∗/θ where δ∗ and θ are the displacement and momentum
thicknesses, computed by integrating the instantaneous plane-averaged velocity pro-
files from the lower wall to the point of maximum velocity. It is a more important
quantity technologically than the friction coefficient. If the form factor is low the
velocity profile is steep near the wall, and the boundary layer tends to be resilient to
separation, while the opposite is true if the form factor is high. The main beneficial
effect of locally increasing the friction coefficient in a boundary layer is to decrease its
form factor. It is seen in figure 13(a) that the form factor of the porous wall is indeed
lower than that of the impermeable one but that, unlike the evolution of the friction
coefficient, the time that it needs to adapt to the change of the boundary condition is
comparable during the start-up and during the shutdown, and is in both cases long.
This suggests that the fast decay of the friction in the shutdown is a local effect in the
neighbourhood of the wall, which only affects slowly the boundary layer as a whole.

This is confirmed by figure 13(b), which shows the instantaneous plane-averaged
velocity profiles during the initial part of the shutdown. The profile very close to the
wall changes quickly, but the outer part is not changed, and the resulting bulge grows
only slowly to change the profile to its impermeable shape.

In figure 14 we have mapped the outwards diffusion of the effect of the boundary
condition in both cases. We have used the evolution of the spanwise correlation
length,

Luu,z =

∫ Lz

0

Ru′u′(z) dz, (6.1)

which gives an idea of the growth of the two-dimensional mode. We see in figure
14(a) that this length is uniformly small in the impermeable channel, at t = 0, and
begins to grow very near the wall immediately after the porosity is switched on. After
a delay of about Ubt/h ≈ 25 during which the two-dimensionality stays confined
below y+ = 20, there is a more or less linear diffusion away from the wall. In this
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Figure 14. Evolution of wall-normal distribution of the spanwise correlation length Luu,z . Contours
are L+

uu,z = 0.5(×2)32, going from light to dark. (a) Start-up case P3. (b) Shutdown case I2. The

dotted lines in both plots have slope dy+/dt+ ≈ 0.6.

particular case this happens in two episodes, one around Ubt/h ≈ 30 and the other
at Ubt/h ≈ 45. By the time the second burst reaches y+ ≈ 40 the friction coefficient
is near its asymptotic value, and the flow is essentially at equilibrium. The behaviour
during shutdown is different in that the initial transient is missing. The near-wall
structures are destroyed immediately after the porosity is switched off, and the linear
diffusion away from the wall starts without delay. This vertical diffusion happens at
about the same rate in both cases. The dotted lines in the two contour maps have a
slope dy+/dt+ ≈ 0.6.

If we interpret the growth and decay of the form factor as due to the formation
and destruction of the spanwise rollers, which we found in the previous section to
move at U ≈ 12uτ, the characteristic start-up time, ∆t+ = 700, would correspond to
a distance of about ∆x+ = 8000, or about 40 boundary layer thicknesses.

The observations in this section can be compared to those of He & Jackson (2000)
on the evolution in turbulent pipes subject to a sudden increase in the flow rate.
They also find that turbulence is modified starting from the wall, and identify two
stages. In the first one, which lasts about 100 wall units, the effect of the boundary
condition diffuses through the viscous sublayer until it reaches the location of the
turbulence production peak at y+ ≈ 10. This would correspond to the initial delay
in figure 14(a), and is roughly consistent with our value of Ubt/h = 25 ≈ 250+. In
a second stage, the turbulence production is modified, and the effect is transmitted
outwards at a constant wall-normal velocity of the order of 0.7uτ. This is also not
too far from the slope of the dotted lines in figure 14. Since their experiments are
done at Reτ ≈ 103, which is substantially higher than ours, and the details of their
forcing are also quite different, this rough agreement suggests that our results on the
length of the transients should scale to situations of practical interest as multiples of
the boundary layer thickness.

7. Active control
We have discussed up to now a passive control configuration, in which the natural

instability of the flow is used to generate coherent structures, which in turn modify
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Case U+
c v+

rms cfb/cf0 cfb/cft

F1 0 0.06 1.09 1.00
F2 10 0.1 1.11 1.06
F3 10 0.2 1.27 1.21
F4 0 0.2 1.15 1.04
F5 2 0.2 1.15 1.10
F6 5 0.2 1.58 1.40
F7 8 0.2 1.56 1.36
F9 12 0.2 1.12 1.06

F10 15 0.2 1.10 1.01

Table 3. Active control experiments. U+
c is the phase velocity of the forced harmonic transpiration,

and vrms is its r.m.s. intensity. Both are normalized with the friction velocity of the unforced
impermeable channel. cfb and cft are the friction coefficients on the porous and impermeable walls,
and they are compared with the value cf0 of the reference case I1. In all cases the forcing wavelength
was equal to the box length, λx = 2.69h ≈ 490+.

the flow and the skin friction. We have mentioned some problems with this approach.
In the first place, the only control parameter is the porosity, which may be hard
to manipulate dynamically. We also noted in the introduction that it might be
difficult to avoid large-scale recirculation through the plenum chamber in the presence
of macroscopic pressure gradients, and we later found, in figure 14(a), that the
development time of the instability is not a negligible fraction of the time needed by
porosity to modify the flow.

All these problems suggest the convenience of developing active control strategies
involving distributions of local transpiration which are independent of the pressure
fluctuations at the wall. Those patterns could presumably be generated using MEMS,
and therefore be available ‘on demand’, and they would bypass the slow growth of
the porous instability. Moreover, since it follows from the arguments in the previous
sections that the main effect of porosity is to initiate the spanwise rollers, it should
be possible to implement such strategies in ‘open loop’, forcing rolls of the right
wavelength and phase velocity without locally sensing the microscopic flow variables.
A final advantage of the numerical experiments needed to test such active controls is
that they allow us to study in detail the effect of the rollers on the flow by means of
phase averaging.

Those experiments are discussed in this section. A spanwise-coherent wall transpi-
ration is imposed on the wall, with the form

v =
√

2vrms sin [kx(x−Uct)]. (7.1)

Its aim is to take advantage of the natural instability of the flow to generate the
largest possible change in the friction coefficient with a given wall transpiration. The
experiments are listed in table 3, and the resulting changes in the friction coefficient
are collected in figure 15(a), which also includes the porous cases. There are two
sets of experiments. In the first one the phase speed of the forcing is kept constant,
U+
c = 10, and the transpiration amplitude is changed, while in the other the amplitude

is kept constant and the phase velocity is changed. All the experiments are done in the
smaller of the two numerical boxes given in table 1, to allow a reasonably complete
parameter scan within the available computer time. As discussed in the introduction
this box is large enough to contain most of the structures in regular channels but, as
in the case of porosity, the forcing wavelength, which is always the length of the box,
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is too short to be optimal. The numerical resolution is given in table 1 for the case
F2, and is similar for all the other cases. It is comparable to, or better than, the ones
used in the porous simulations and in the channel of Kim et al. (1987). A simulation
similar to case F6, with the same short forcing wavelength, was run in the larger box
of case I1 to test for possible gross artifacts due to the box size, but none was found.

The first series of experiments was used to estimate the maximum practical forcing
amplitude. Above v+

rms ≈ 0.2, local separation appears, in agreements with the limits
found for porous walls. The high-amplitude forcing experiments which resulted in
separation were not continued for long times, and are not reflected in table 3.

The second series of tests was designed to check whether what was being forced
was the instability studied in § 5, by looking for a resonance peak in terms of the
convection velocity. The friction coefficients of those cases are given in figure 15(b).
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There is indeed a broad peak, which is not too far from the convection velocity given
in figure 10 for the unstable rolls at this wavenumber.

A more direct test of the linear analysis is to compare the forced nonlinear
results with the forced solutions of the Orr–Sommerfeld equation (5.3). Those can be
obtained by using v̂(0) = 1 at the lower wall, instead of the porosity condition, while
substituting an arbitrary phase velocity Uc for the eigenvalue c.

The relevant linear modes in this case are not those of the porous channel, but
the least damped ones of an impermeable one. If we return for a moment to the
inviscid linear analysis in § 5.1, those are the neutral modes of the inviscid profile. If
the system were driven in that case by a sinusoidal transpiration velocity moving with
a phase velocity Uc, the response would be the superposition of an inhomogeneous
term, which decays exponentially away from the wall, and a resonant component
proportional to the eigenfunction of that particular wavenumber. The amplitude
of this second component would be proportional to 1/(Uc − c), where c is the
eigenvelocity. In the inviscid case it would become infinite when the two velocities
coincide. Viscosity, or in turbulent flows eddy viscosity, damps these modes and makes
the resonance peak broader and of finite amplitude. That the linear analysis explains
most of the spanwise coherent fluctuations is seen in figure 16, which compares the
two-dimensional intensities for two flows forced at different amplitudes, but with the
same wavenumbers and phase velocities, with the result of the linear calculations.
Each curve is normalized with its own transpiration r.m.s. velocity, and not only is
the linear scaling satisfied well, but the agreement with the linear analysis is excellent.

We have included in figure 15(b) the linear prediction for the change in the friction
coefficient, based on the analysis in § 5.1. This is the change in friction due to
the Reynolds stresses of the two-dimensional fluctuations plotted in figure 16. The
position of the peak is predicted well, supporting the conclusion that the mechanism
involved is indeed a resonance, but its amplitude is too low by a factor of about
three. This agrees with the conclusions of the discussion of (5.9), which was that
the two-dimensional structures are the seed, but not the only contributors, to the
enhanced turbulent activity.

That the rollers are being generated by the forcing is shown in figure 17, which
contains flow fields averaged with respect to the phase of the forcing. The isolines in
both parts of the figure correspond to the spanwise-averaged velocity in the frame
of reference moving with the forcing wave. They show the cat’s-eye pattern of the
rollers, which are centred near the linear critical layer at which 〈u〉 = Uc. Figure 17(a)
includes a map of the local intensity of the incoherent fluctuations u′′, which are
defined with respect to the local phase-averaged velocity by (3.7). It shows how the
rollers modulate the turbulent quantities and, in particular, how the fluctuations are
intensified by the artificial ‘ejection’ at the trailing edge of the rollers, while being
damped by the ‘sweep’ which follows it.

Figure 17(b) shows the spanwise-averaged ωz , which is the vorticity component
responsible for the wall friction. It is clear that most of the extra skin friction is
generated where the flow is forced by the rollers into the wall.

Finally, in figure 18(a) we show the change of the friction coefficient predicted by
the linear stability analysis, as a function of the wavelength and of the phase velocity
of the forcing. The dashed line is the eigenvalue of (5.3), and agrees well with the
ridge of maxima of the forced response, supporting again the idea of a resonance. The
eigenvalue used in this figure was computed by numerical continuation from the only
eigenvalue whose phase velocity at short wavelengths is clearly slower than the phase
velocity. Its energy is initially contained near the wall but, as the wavelength increases,
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Figure 17. Phase-averaged flow fields from the forced case with v+
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plots the streamlines are from the spanwise-averaged velocity in a frame of reference moving with
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increasing from left to right; −−−−, real part of the eigenvalues from the linear stability problem.
Reτ = 180. (b) Real part of the stability eigenvalues. ———, Reτ = 180; −−−−, Reτ = 590.

the eigenfunction moves away from the wall and the phase velocity increases. All the
other eigenvalues have real parts which are comparable with the centreline velocity,
and eigenfunctions which reside away from the wall at all wavelengths. In figure
18(b) we plot the real part of the eigenvalue compared with results at Reτ = 590.
They agree with each other in wall units better than in outer units, suggesting that
this would also be the case for the real response of forced turbulent channels. The
damping times of these eigenvalues are in both cases of the order of 10–20ν/u2

τ . They
are therefore close to neutral from the point of view of turbulence.

The predicted amplitude of the forced response increases with increasing wave-
lengths, essentially because a deeper layer participates in the eigenfunction, but the
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effect levels off at very long wavelengths for which the profile accelerates and de-
celerates as a unit. This would be the preferred range of operation for a practical
application of forcing to increase the skin friction, but it should be interpreted with
care when applied to external flows, in the light of the discussion at the end of § 5.1.

8. Discussion and conclusions
We have shown that passive porous walls increase skin friction by substantial

amounts, which are limited to about 40% by the appearance of local flow separation.
We have shown that this effect is unrelated to the roughness effect of discrete pores,
since our porosity is smoothly distributed. The extra drag is in part due to the energy
dissipated as the transpiration crosses the permeable wall, but this loss only explains
about 10% of the total drag increase. The rest is due to a large-scale reorganization
of the flow, over distances comparable with the channel half-width, which originates
from a linear instability resulting in coherent spanwise rolls. The rolls increase drag
by creating large-scale ‘sweeps’ in which the velocity is directed into the wall, locally
increasing the skin friction, and ‘ejections’ in which the instability and intensity of the
velocity streaks is enhanced.

We have connected the linear instability responsible for the rolls to the neutral
shear waves of the inviscid mean velocity profile. Although these modes are damped
by viscosity in real channels, they couple to the porosity condition and become unsta-
ble, even when the porosity coefficient is small. The root-mean-square transpiration
velocities measured in the porous simulations are of the order of 0.1uτ. It is also
these modes which are excited in our forced simulations, as shown by the resonance
effect when the advection velocity of the forcing agrees with the phase velocity of the
almost-neutral eigenfunctions of the velocity profile. When the rolls are excited in this
way the skin friction also increases, to levels which are even higher than those achieved
with passive porosity. The forced experiments have been used to confirm, by means of
phase-locked averaging, the mechanisms hypothesized to explain the effect of porosity.

Our investigation was motivated by the possibility of using either passive porosity
or active transpiration as ‘on demand’ roughness to delay separation in boundary
layers. The study of resonant active forcing was originally undertaken to remedy
some difficulties identified in the practical use of passive porous surfaces. Although
implementation issues are not part of this paper, it is interesting to note that the
control strategies based on this effect would be both large scale and open loop.
There have been many attempts to control drag by manipulating the stability of
individual streaks, some of which are mentioned in the introduction. While this has
been demonstrated in some cases, those strategies are generally both small scale, with
actuators which must have dimensions of a few wall units, and closed loop, requiring
local flow sensing. The wall unit in air at high subsonic speeds is of the order of 1µm,
placing strong constraints on the implementation of sensors and actuators. Although
our simulations are limited to a single Reynolds number, we have estimated scaling
laws whenever possible by comparing with related experiments. We have found for
example that the length needed to switch the effect of porosity on and off probably
scales with the boundary layer thickness. Although not discussed in detail here, a
comparison of the linear stability results at two different Reynolds numbers suggests
that the most effective forcing wavelength is of the order of several boundary layer
thicknesses. We have however mentioned that this last conclusion should be applied
with care to external flows, in view of the differences observed in the simplified linear
analysis of boundary layers and channels.
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In any case, the forcing of the flow can be implemented without reference to the
instantaneous flow variables, except for large-scale information on the state of the
boundary layer, since the control parameters are the known wavelength and advection
velocity of the forcing.

Although we mentioned in the introduction several experiments in which passive
porosity has been shown to increase drag by amounts comparable to those found
in this paper, there are to our knowledge no experiments on the effects of periodic
travelling transpiration waves. The closest are perhaps on the delay of separation by
the periodic addition of momentum at the root of a hinged flap, reviewed by Wygnan-
ski (1997). He forces the boundary layer with a pulsating massless two-dimensional
jet near the hinge, and finds that there are two effects with different characteristic
parameters. The reattachment on a stalled flap is due to the enhancement of the
entrainment of the separated free shear layer, bleeding fluid from the recirculating
bubble, and is presumably different from the effect of periodic forcing observed in
our case. The maintenance of the attached boundary layer, on the other hand, should
be closer to our problem. He finds that the forcing frequency that is most efficient
in preventing separation is 4Lf/U∞, where the choice of the flap length Lf as a
characteristic length is geometry-dependent and is justified in Seifert et al. (1993).
Since the measured advection velocity of the resulting pressure fluctuations is about
0.45U∞ and the displacement thickness of the resulting boundary layer is of the order
of δ∗/Lf = 0.04, this corresponds to a wavelength of about 3δ∗. Since in a channel
δ∗/h ≈ 0.14, this would put his optimum forcing in the range of very short waves, for
which such a low convection velocity is reasonable. The very different geometries of
the two cases, and especially the qualitative differences between the velocity profiles of
a fully attached channel and of a flap near separation, make any further quantitative
comparison impossible.

There are several outstanding issues which need clarification before this problem
can be considered closed. Although the agreement between the the forced spanwise-
averaged fluctuations and the linear analysis has been shown to be excellent, we
have mentioned that the measured spanwise rollers over passive porous walls extend
deeper into the flow than the two-dimensional linear eigenfunctions, and that, both
in the forced and in the passive cases, the observed change in the skin friction is two
or three times larger than the one predicted from two-dimensional linear analysis.
We have of course no right to expect strict linear behaviour of a flow in which the
skin friction increases by 50%, but these discrepancies are bothersome and should
eventually be clarified.

A fascinating possibility, which has also not been pursued here but which is
under active investigation in our group, is that the quasi-neutral linear eigenfunctions
identified in this paper may be related to the very large scales observed in wall flows
(Jiménez 1998; Kim & Adrian 1999). They have comparable wavelengths and reside
at similar locations within the boundary layer and, although they are made unstable
here by their coupling to the porosity condition, it is easy to imagine interaction
mechanisms with the near-wall layer that would also make them unstable in an
impermeable channel. The low value of the wall-normal velocity needed to get a large
effect in the porous case suggests that relatively weak interactions might be sufficient.

Finally, experimental confirmation of both the flow structure and the effects of the
forcing is clearly desirable.
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